13,739 research outputs found

    Measuring Fundamental Parameters of Substellar Objects. II: Masses and Radii

    Full text link
    We present mass and radius derivations for a sample of very young, mid- to late M, low-mass stellar and substellar objects in Upper Sco and Taurus. In a previous paper, we determined effective temperatures and surface gravities for these targets, from an analysis of their high-resolution optical spectra and comparisons to the latest synthetic spectra. We now derive extinctions, radii, masses and luminosities by combining our previous results with observed photometry, surface fluxes from the synthetic spectra and the known cluster distances. These are the first mass and radius estimates for young, very low mass bodies that are independent of theoretical evolutionary models (though our estimates do depend on spectral modeling). We find that for most of our sample, our derived mass-radius and mass-luminosity relationships are in very good agreement with the theoretical predictions. However, our results diverge from the evolutionary model values for the coolest, lowest-mass targets: our inferred radii and luminosities are significantly larger than predicted for these objects at the likely cluster ages, causing them to appear much younger than expected. We suggest that uncertainties in the evolutionary models - e.g., in the choice of initial conditions and/or treatment of interior convection - may be responsible for this discrepancy. Finally, two of our late-M objects (USco 128 and 130) appear to have masses close to the deuterium-fusion boundary (9--14 Jupiters, within a factor of 2). This conclusion is primarily a consequence of their considerable faintness compared to other targets with similar extinction, spectral type and temperature (difference of 1 mag). Our result suggests that the faintest young late-M or cooler objects may be significantly lower in mass than the current theoretical tracks indicate.Comment: 54 pages, incl. 5 figs, accepted Ap

    How Many Templates for GW Chirp Detection? The Minimal-Match Issue Revisited

    Full text link
    In a recent paper dealing with maximum likelihood detection of gravitational wave chirps from coalescing binaries with unknown parameters we introduced an accurate representation of the no-signal cumulative distribution of the supremum of the whole correlator bank. This result can be used to derive a refined estimate of the number of templates yielding the best tradeoff between detector's performance (in terms of lost signals among those potentially detectable) and computational burden.Comment: submitted to Class. Quantum Grav. Typing error in eq. (4.8) fixed; figure replaced in version

    Quantum Friction of Micromechanical Resonators at Low Temperatures

    Full text link
    Dissipation of micro- and nano-scale mechanical structures is dominated by quantum-mechanical tunneling of two-level defects intrinsically present in the system. We find that at high frequencies--usually, for smaller, micron-scale structures--a novel mechanism of phonon pumping of two-level defects gives rise to weakly temperature-dependent internal friction, Q1Q^{-1}, concomitant to the effects observed in recent experiments. Due to their size, comparable to or shorter than the emitted phonon wavelength, these structures suffer from superradiance-enhanced dissipation by the collective relaxation of a large number of two-level defects contained within the wavelength.Comment: To apear in Phys. Rev. Let

    Equilibration in Quark Gluon Plasma

    Full text link
    The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.Comment: To be published in the Quark Matter 2008 poster proceeding

    Detecting an association between γ\gamma Ray and Gravitational Wave Bursts

    Get PDF
    If γ\gamma-ray bursts (GRBs) are accompanied by gravitational wave bursts (GWBs) the correlated output of two gravitational wave detectors evaluated in the moments just prior to a GRB will differ from that evaluated at times not associated with a GRB. We can test for this difference independently of any model of the GWB signal waveform. If we invoke a model for the GRB source population and GWB radiation spectral density we can find a confidence interval or upper limit on the root-mean-square GWB signal amplitude in the detector waveband. To illustrate we adopt a simple, physically motivated model and estimate that initial LIGO detector observations coincident with 1000 GRBs could lead us to exclude, with 95% confidence, associated GWBs with $h_{RMS} be Gaussian or that any inter-detector correlated noise be measured or measurable; it does not require advanced or a priori knowledge of the source waveform; and the limits obtained on the wave-strength improve with the number of observed GRBs

    Acceptance Dependence of Fluctuation in Particle Multiplicity

    Full text link
    The effect of limiting the acceptance in rapidity on event-by-event multiplicity fluctuations in nucleus-nucleus collisions has been investigated. Our analysis shows that the multiplicity fluctuations decrease when the rapidity acceptance is decreased. We explain this trend by assuming that the probability distribution of the particles in the smaller acceptance window follows binomial distribution. Following a simple statistical analysis we conclude that the event-by-event multiplicity fluctuations for full acceptance are likely to be larger than those observed in the experiments, since the experiments usually have detectors with limited acceptance. We discuss the application of our model to simulated data generated using VENUS, a widely used event generator in heavy-ion collisions. We also discuss the results from our calculations in presence of dynamical fluctuations and possible observation of these in the actual data.Comment: To appear in Int. J. Mod. Phys.
    corecore